Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(X)) → c(n__f(g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
d(X) → n__d(X)
activate(n__f(X)) → f(X)
activate(n__d(X)) → d(X)
activate(X) → X
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(f(X)) → c(n__f(g(n__f(X))))
c(X) → d(activate(X))
h(X) → c(n__d(X))
f(X) → n__f(X)
d(X) → n__d(X)
activate(n__f(X)) → f(X)
activate(n__d(X)) → d(X)
activate(X) → X
Q is empty.
We use [27] with the following order to prove termination.
Knuth-Bendix order [24] with precedence:trivial
and weight map:
f_1=13
c_1=18
g_1=2
n__f_1=2
h_1=21
activate_1=12
d_1=4
n__d_1=2
dummyConstant=1